Predictive fertilization models for potato crops using machine learning techniques in Moroccan Gharb region
نویسندگان
چکیده
<span lang="EN-GB">Given the influence of several factors, including weather, soils, land management, genotypes, and severity pests diseases, prescribing adequate nutrient levels is difficult. A potato’s performance can be predicted using machine learning techniques in cases when there enough data. This study aimed to develop a highly precise model for determining optimal nitrogen, phosphorus, potassium required achieve both <br /> high-quality high-yield potato crops, taking into account impact various environmental factors such as soil type, management practices. We used 900 field experiments from Kaggle part data set. developed, evaluated, compared prediction models k-nearest neighbor (KNN), linear support vector (SVM), naive Bayes (NB) classifier, decision tree (DT) regressor, random forest (RF) eXtreme gradient boosting (XGBoost). measures mean average error (MAE), squared (MSE), R-Squared (RS), R<sup>2</sup>Root (RMSE) describe model’s mistakes capacity. It turned out that XGBoost has greatest R<sup>2</sup>, MSE MAE values. Overall, outperforms other models. In end, we suggested hardware implementation help farmers field.</span>
منابع مشابه
Machine Learning Models for Housing Prices Forecasting using Registration Data
This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...
متن کاملDust source mapping using satellite imagery and machine learning models
Predicting dust sources area and determining the affecting factors is necessary in order to prioritize management and practice deal with desertification due to wind erosion in arid areas. Therefore, this study aimed to evaluate the application of three machine learning models (including generalized linear model, artificial neural network, random forest) to predict the vulnerability of dust cent...
متن کاملUsing Visual Analytics to Interpret Predictive Machine Learning Models
It is commonly believed that increasing the interpretability of a machine learning model may decrease its predictive power. However, inspecting input-output relationships of those models using visual analytics, while treating them as blackbox, can help to understand the reasoning behind outcomes without sacrificing predictive quality. We identify a space of possible solutions and provide two ex...
متن کاملPredictive Machine Learning Techniques for Breast Cancer Detection
Machine learning is a branch of artificial intelligence that incorporate a variety of statistical, probabilistic and optimization techniques that allow computers to “learn” from past examples and to detect hardto-diagnosed patterns from massive , noisy or complex data sets. This features are particularly well-suited to medical applications, especially those that depend on complex proteomic and ...
متن کاملusing game theory techniques in self-organizing maps training
شبکه خود سازمانده پرکاربردترین شبکه عصبی برای انجام خوشه بندی و کوانتیزه نمودن برداری است. از زمان معرفی این شبکه تاکنون، از این روش در مسائل مختلف در حوزه های گوناگون استفاده و توسعه ها و بهبودهای متعددی برای آن ارائه شده است. شبکه خودسازمانده از تعدادی سلول برای تخمین تابع توزیع الگوهای ورودی در فضای چندبعدی استفاده می کند. احتمال وجود سلول مرده مشکلی اساسی در الگوریتم شبکه خودسازمانده به حسا...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Power Electronics and Drive Systems
سال: 2023
ISSN: ['2722-2578', '2722-256X']
DOI: https://doi.org/10.11591/ijece.v13i5.pp5942-5950